Air conditioning

Air conditioning

 

Air conditioning (often referred to as aircon, AC or A/C) is the process of altering the properties of air (primarily temperature and humidity) to more favourable conditions. More generally, air conditioning can refer to any form of technological cooling, heating, ventilation, or disinfection that modifies the condition of air.

An air conditioner is a major or home appliance, system, or mechanism designed to change the air temperature and humidity within an area (used for cooling and sometimes heating depending on the air properties at a given time). The cooling is typically done using a simple refrigeration cycle, but sometimes evaporation is used, commonly for comfort cooling in buildings and motor vehicles. In construction, a complete system of heating, ventilation and air conditioning is referred to as “HVAC”.

Air conditioning can also be provided by a simple process called free cooling which uses pumps to circulate a coolant (typically water or a glycol mix) from a cold source, which in turn acts as a heat sink for the energy that is removed from the cooled space. Free cooling systems can have very high efficiencies, and are sometimes combined with seasonal thermal energy storage (STES) so the cold of winter can be used for summer air conditioning. Common storage media are deep aquifers or a natural underground rock mass accessed via a cluster of small-diameter, heat exchanger equipped boreholes. Some systems with small storage are hybrids, using free cooling early in the cooling season, and later employing a heat pump to chill the circulation coming from the storage. The heat pump is added-in because the temperature of the storage gradually increase during the cooling season, thereby declining in effectiveness. Free cooling and hybrid systems are mature technology.

 

Air conditioner inverter

 

An inverter in an air conditioner is used to control the speed of the compressor motor to drive variable refrigerant flow in an air conditioning system to regulate the conditioned-space temperature. By contrast, traditional air conditioners regulate temperature by using a compressor that is periodically either working at maximum capacity or switched off entirely. Inverter-equipped air conditioners have a variable-frequency drive that incorporates an adjustable electrical inverter to control the speed of the motor and thus the compressor and cooling output.

The variable-frequency drive uses a rectifier to convert the incoming alternating current (AC) to direct current (DC) and then uses pulse-width modulation in an electrical inverter to produce AC of a desired frequency. The variable frequency AC drives a brushless motor or an induction motor. As the speed of an induction motor is proportional to the frequency of the AC, the compressor can now run at different speeds.[citation needed] A microcontroller can then sample the current ambient air temperature and adjust the speed of the compressor appropriately. The additional electronics and system hardware adds cost to the equipment installation but can result in substantial savings in operating costs.
Eliminating stop-start cycles increases efficiency.